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Reflection Analysis of FDTD Boundary
Conditions—Part I: Time-Space

Absorbing Boundaries
Deane T. Prescott,Member, IEEE,and Nicholas V. Shuley,Member, IEEE

Abstract—Time-space absorbing-boundary conditions (ABC’s)
are employed to truncate finite-difference time-domain (FDTD)
computational domains and are predominantly used because of
their simplicity. Their implementation requires only the calcula-
tion of a boundary-field value as a function of the local fields and
their recent time history. A general method is described, which
enables highly accurate calculation of the reflection properties of
these boundary conditions for plane-wave incidence. A number of
commonly used time-space ABC’s are studied, and the technique
is verified by way of FDTD simulation. It is demonstrated that
the performance of time-space ABC’s is substantially degraded
by the influence of the finite-mesh discretizations. A technique
is described, which enables these discretization inaccuracies to
be overcome by correctly choosing the relevant ABC weight-
ing parameters, thus enabling the various boundary conditions
to perform precisely as desired. Solutions for these weighting
parameters are provided for a number of common boundary
conditions such that their absorption characteristics may be
precisely configured to suit any level of mesh discretization. As a
consequence, a performance equivalence is established amongst
all time-space ABC’s of the same order.

Index Terms—Absorbing boundary conditions, FDTD, time
domain.

I. INTRODUCTION

A BSORBING-BOUNDARY conditions (ABC’s) are one
of the most critical elements of finite-difference time-

domain (FDTD) analyses. Used to truncate the computational
domain, the ability of an ABC to absorb waves traveling
outwardly from an FDTD mesh, not only affects the accuracy
of the analysis, but also governs the size of the computational
domain and, as a result, the duration of computation.

In this paper, time-space-type ABC’s are studied. These
are ABC’s where the field component on the mesh boundary
at time is calculated as a function of the local field
components, both on the boundary and within the FDTD
lattice, and their recent time history, , where

.
Many studies have been undertaken in the past concerning

time-space ABC’s. These have included the creation of differ-
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ent ABC’s and their variants [1]–[4], studying their absorbing
abilities [5], [6], and methods for their improvement [7]–[9].
The effects that the finite discretization has upon ABC’s and
the absorption characteristics for coarse and fine FDTD meshes
has also been studied by Railton and Daniel [10]. The objective
of this paper is to demonstrate that the reflection characteristics
of these boundaries can be accurately predicted without the
need for FDTD simulation. It will then be shown that the
mesh discretization can be overcome as a limiting factor in
the design of time-space ABC’s.

Firstly, some definitions that apply to this study of time-
space ABC’s will be provided. These include the perfor-
mance function, the optimum performance, and theorder
by which these ABC’s will be classified. A method for
evaluating the performance of these ABC’s given plane-wave
incidence will be presented, which will be validated using
three ABC’s appearing very frequently in the literature. These
are the second-order ABC of Trefethen and Halpern [2], box-
scheme discretization of the second-order Higdon ABC [3],
and second-order modified Liao ABC [11]. Finally, it will
be shown that given the correct choice of parameters (as
a function of the mesh resolution), each of these boundary
conditions can be designed to perform optimally (in the
sense that they are perfectly absorbing at specified angles of
incidence).

For simplicity, the analyses will be presented for two-
dimensional (2-D) free-space on the– plane. (the -direction
is not used to avoid confusion between the FDTD-directed
nodal index , and the numerical .) The theory and
methods presented here are applicable to mesh truncation in
three-dimensional (3-D) space and dispersive media.

II. DEFINITIONS

Performance: The ability for an ABC to absorb will be
measured by the amount of numerical reflection as a func-
tion of the angle of incidence upon the mesh boundary. If
free-space and monochromatic excitation are assumed, then
choosing a mesh discretization size (wavelength/mesh
cell size) to set the level of accuracy for the FDTD simulation
will also specify the frequency, , of the incident wave.

Incidence Angle:The angle of incidence,, of a wave upon
a boundary in an FDTD simulation is defined as

(1)
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where and are the normal and tangential components of
the numerical wavenumber. These are related to the frequency
by the FDTD dispersion relation [12].

Order (N): The order of an ABC is defined as the number
of zeros which can be achieved in the reflection function of
an ABC. The reflection function describes the performance of
an ABC as a function of the incidence angle.

Optimum Performance:Occurs when the reflection func-
tion has zeros at the desired angles of incidence, and is a
minimum for all other incident angles. This can be described
approximately for time-space ABC’s of order as [13]

(2)

III. REFLECTION ANALYSIS BY NUMERICAL FORMULATION

A number of methods for calculating the reflection resulting
from an ABC have been given in the literature. The amplitude
of the reflection has been previously calculated from the
differential equations from which the boundary conditions are
derived [11], [14]. Unfortunately, these methods neglect the
errors resulting from the discretization. Other authors have
calculated the reflection from the discretized equations by
substituting into them, expressions for the incident field as
a function of space and time [8]. Again, this is not entirely
accurate as it neglects the numerical dispersion inherent in the
FDTD algorithm [15]. Thus, to calculate the reflection from
the ABC’s, it is suggested that one follows the method where
the reflection from the ABC’s is calculated by substituting
directly into the discretized FDTD equations, expressions for
the incident fields, which include the effects of the numerical
dispersion. This will be referred to as theformulationmethod,
and does not involve any actual FDTD simulation.

A general form for the time-space ABC is defined, where
the boundary-field component, , is located at position

, and is required at time . The ABC is
calculated as a weighted sum of the local field values and
their time history

(3)

where , , , and define the maximum and
minimum indexes of the local time-space domain from which
the boundary field is calculated. The weighting elements,

, are defined individually for each ABC.
Now an incident plane-wave traveling to the left (-

direction) can be defined as

(4)

where is the spatial position index in the normal (to the
boundary) direction, is the spatial position in the tangential
direction, is the time index, and and are the tangential
and normal numerically calculated wavenumbers (numerically
calculated, implying that they are related to each other by the
FDTD dispersion relation [12]).

When this wave makes contact with the absorbing boundary,
it produces a total field consisting of incident- and reflected-
wave components

(5)

where is the reflection coefficient. This formulation for
the -field components can then be substituted into (3)
to form a relationship between the ABC reflection coefficient
and the ABC weighting functions. Thus

(6)

If the right-hand side (RHS) of (6) is separated into two
summations representing the incident and reflected fields, one
can then solve for the reflection coefficient shown in
(7) at the bottom of the page. Given the frequency and angle
of incidence, one can calculate the wavenumbersand ,
and thus, the reflection from the time-space ABC.

For example, an ABC may be defined with the following
discrete equations:

(8)

where

(9)

Here, , , and
are constants, which determine the nature of the boundary
condition. In this case, the first-order Mur absorbing boundary
[1] is chosen. One can also find the corresponding equation
for the reflection coefficient as

(10)

(7)
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IV. REFLECTION ANALYSIS BY FDTD SIMULATION

The accuracy of the reflection-calculation technique pre-
sented in the previous section, will be demonstrated with
results achieved by using FDTD simulation.

The FDTD reflection analysis was performed using a novel
quasi-2-D FDTD mesh designed to simulate -wave trans-
mission within 2-D space (– plane, , , components
only). A monochromatic wave is launched at an ABC bound-
ary, which terminates the mesh in the-direction, and the
magnitude of the reflected wave is recorded.

The simulation is performed at a single frequency, for
a given angle of incidence. Because the calculation of an
ABC is uniform across the full length of a boundary, the
wavefront, which reflects from an ABC, must now have the
same tangential wavenumber as the incident wave (angle
of reflection equals angle of incidence). A monochromatic
excitation is being used, which implies that all fields within
the FDTD mesh must have the same tangential wavenumber.
This fact can be used to considerably reduce the size of the
FDTD mesh without loss of accuracy. This is achieved by
removing the transverse direction, thus creating a quasi-2-D
FDTD mesh.

The FDTD simulation is performed using complex numbers
to represent the nodal-field values, this aids in calculating
the transverse differences and in extracting reflection data.
In reality, only a one-dimensional (1-D) mesh is created
which contains all three field components required in the 2-D
mesh (see Fig. 1). The existence of the second dimension, in
this case, the -direction, is taken into account by implicitly
calculating the tangential spatial differences in the FDTD
equations. This is possible since all fields within the mesh
must have the same wavenumber in the-direction. Consider,
for example, the FDTD equation for the -field component

(11)

The term which contains the spatial difference in the tangential
to the boundary direction is

(12)

but since the tangential component of the wavenumber is being

enforced, then .
Making this substitution into (11), the implicitly differenced
form of the FDTD equation for the component becomes

(13)

(a)

(b)

Fig. 1. Positioning of the field components required for the implementation
of: (a) the normal 2-D FDTD mesh and (b) the quasi-2-D FDTD mesh.

The reflection from an ABC can now be accurately calculated
for a given angle of incidence without the need for a large 2-D
FDTD mesh, as the transverse-direction is now implicitly
included into the formulation. The possibility of interference
from ABC’s placed along the boundaries at each of the
extremities of a 2-D FDTD mesh in the-direction has also
been removed.

For comparison of the reflection-calculation technique, the
FDTD simulator described above has been applied to the
reflection analysis of three different ABC’s, which are: 1)
the generalized second-order ABC of Trefethen and Halpern
(formulation as described by Blaschak and Kriegsmann [5,
p. 118]); 2) the second-order Higdon ABC using the box-
scheme discretization (formulation as described by Bi, Wu,
and Litva [16, p. 776]); and 3) the second-order modified Liao
ABC [11, p. 538]. Each of these ABC’s will be designed
and analyzed for two different cases where the designated
angles of complete absorption are: a) and b)

and . The weightings required to implement
these ABC’s will be provided; however, the reader is referred
to the cited publications for a detailed description of their
derivation.

Trefethen and Halpern’s Second-Order ABC:
The weightings required to implement this ABC are as

follows, all other weightings are set to zero:

(14)
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Fig. 2. The reflection function for the second-order Trefethen and Halpern
ABC, calculated by FDTD simulation and numerical formulation�=�z = 20.
Designated angles of complete absorption are: (a)�1 = �2 = 0

� and (b)
�1 = 5

� and �2 = 30
�.

where

(15)

and

(16)

The reflection function has been obtained using both the FDTD
simulation and the numerical calculation procedure, described
previously for two separate configurations of the ABC with
the variables and (16), chosen such that the theoretical
angles of complete absorption are: a) and b)

and . It should be noted that this ABC is
equivalent to the well-known second-order Mur ABC [1] for
the case where .

The results from these calculations are provided in Fig. 2. As
can be seen from these results, the calculation procedure has
been extremely accurate in predicting the reflection function of
the ABC. A number of properties of this boundary condition
can also be observed. Firstly, the most obvious feature of
these reflection functions is that the zeros do not appear in
the positions as given by the choice ofand . In fact, only
one zero appears in each reflection function where two should
be seen. This occurs as a result of discretizing the differential
equations which define the ABC [5], [10]. It can also be seen

that as the incident angle is decreased below these zeros, the
amount of reflection increases rapidly to quite high values,
i.e., 10 . Above these zeros, one can see a trend which is
common to time-space ABC’s, where the reflection function
increases monotonically toward 1 at 90.

Higdon’s Second-Order ABC:
The weightings required to implement the box scheme

discretization of Higdon’s second-order ABC are as follows,
with all other weightings being zero:

(17)

where

(18)

The reflection function has been obtained for this ABC using
both the FDTD simulation and the numerical formulation
procedure for two configurations of the Higdon ABC with
the variables and (18) chosen, such that the theoretical
angles of complete absorption are: a) and b)

and .
Fig. 3 displays the results of these simulations. As can be

seen from these results, the calculation procedure has again
been extremely accurate in predicting the reflection function
of the ABC. One can see that there is a slight discrepancy
in the results where the reflection is less than10 . This
is acceptable since numerical error will occur in the FDTD
simulation owing to accumulating computational roundoff and
the oscillatory nature of monochromatic FDTD simulations
[17]. A much-improved performance (greater than one order)
is obtained for this ABC over that achieved by the second-
order Trefethen and Halpern ABC (see Fig. 2). Once again,
the zeros are not exactly at the positions where they have
been designed to be; however, their displacement is not too
unacceptable.

The Second-Order Modified Liao ABC:
The Liao ABC [4] is a time-space extrapolation boundary

condition based upon a knowledge of the incident wave.
The formulation uses the fact that a wave normally incident
upon a boundary, traveling at the speed of light, will travel
a distance of toward the boundary during one FDTD
time step, where is the speed of light. The Liao absorbing-
boundary condition is then constructed as a linear time-space
extrapolation of the fields at the points in space previous
to the boundary at time integer. Because
the points may not coincide with the nodes of the
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Fig. 3. The reflection function for the second-order Higdon ABC, calculated
by FDTD simulation and numerical formulation�=�z = 20. Designated
angles of complete absorption are: (a)�1 = �2 = 0� and (b)�1 = 5�

and �2 = 30�.

Fig. 4. The reflection function for the second-order modified Liao ABC.
Calculated by FDTD simulation and numerical formulation,�=�z = 20.
Designated angles of complete absorption are: (a)�1 = �2 = 0� and (b)
�1 = 5� and �2 = 30�.

FDTD mesh, it is necessary to use an interpolation scheme
to implement this boundary condition [11].

The modified Liao ABC differs from the standard Liao
ABC in that it is able to be tuned for absorption at desired
angles of incidence. The weightings required for the modified
Liao’s second-order ABC resulting from the use of quadratic

Fig. 5. The reflection function for the second-order Higdon ABC for different
mesh discretizations. The designated angles of complete absorption for the
ABC are �1 = 5� and �2 = 30�. The mesh discretization ratios are: (a)
�=�z = 5, (b) �=�z = 10, (c) �=�z = 20, and (d)�=�z = 100.

interpolation are as follows:

(19)

where

(20)

The reflection function has been obtained for the Liao ABC
using both the FDTD simulation and the numerical-calculation
procedure for two configurations of the ABC with the variables

and (20) being chosen to obtain theoretical angles of
complete absorption as follows, where: a) and
b) and .

Fig. 4 displays the results of these simulations. As can be
seen from these results, the data obtained from the numerical
formulation is indistinguishable from that obtained by FDTD
simulation. It is also plainly obvious that the performance of
this ABC is extremely poor. This is a direct consequence of
having to interpolate the field values in space, thus limiting
the accuracy of the ABC to that of the quadratic interpolation.
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V. ABC OPTIMIZATION

If the effects that the finite discretizations have upon the
time-space ABC’s are studied, one finds that as the mesh
becomes coarser (decreasing ), the ABC performance
degrades [10]. This can be observed in Fig. 5, where the reflec-
tion from the second-order Higdon ABC (17) has been calcu-
lated for a number of mesh discretizations. One can see that as
the mesh discretization ratio is increased ( ) that the
reflection function for this ABC approaches the optimal level
of performance, displaying zeros for the desired angles of inci-
dence. The object of this section is to show that one can solve
for the various weighting parameters of all time-space ABC’s
such that the desired optimum performance can be achieved,
regardless of the level of discretization of the FDTD mesh.

If one examines the equation which is used to calculate the
reflection from an ABC (7), one can readily see that the numer-
ator and denominator are effectively polynomials of the three
variables , , and , where the
serve as the polynomial coefficients. Now the performance of
the ABC (as previously defined) is measured only as a function
of the incident angle; thus, remains constant. Since
is related to by the dispersion relation, then one effectively
have a polynomial of only a single variable . Because
this reflection function is a polynomial, finding the incident
angles where the reflection is zero is equivalent to finding
the roots of the numerator. Conversely, the ABC may be
designed to have zeros for certain angles of incidence simply
by correctly setting the weighting parameters .

Upon forming an equation to calculate the reflection from
an ABC, one cansometimessolve for the necessary weighting
parameters to obtain zero reflection at the required
angles of incidence. For example, one may wish to achieve
zero reflection from an ABC discretized in the form given by
(8) for an incident wave with normal wavenumber component

. To achieve , one could solve for
either , , and , or, to retain the
nature of the ABC, one could solve for the parameter, as
follows. Neglecting the denominator from (10), one obtains

(21)

where and is the angle of complete
absorption. After some manipulation, one can then deduce the
following:

(22)

The reflection function for this ABC can then be obtained by
substituting (22) back into (10)

(23)

By inspection, it can be seen that this function will have only
one zero, and it will occur when the incident wavenumber
(normal component) is . This also identifies the ABC
as first-order by definition.

If one applies Taylor expansions to the sine terms in (23),
then to the leading order, this equation has the same form as

the optimum-performance equation (2). This new formulation
for the boundary condition will now be defined as being
optimal, since it now perfectly absorbs at the required angle
of incidence.

The method described above for optimizing the time-space
boundary conditions, solving for , has been applied
to the three boundary conditions mentioned previously: the
second-order ABC of Trefethen and Halpern, the second-order
Higdon using the box-scheme discretization, and the second-
order modified Liao ABC. For the second-order Trefethen and
Halpern (14) and Higdon (17) boundary conditions, it was
possible to retain the character of the boundary conditions and
solve only for their governing variables , , , and . In
the case of the modified Liao boundary condition (19), this was
not possible, and the ABC weightings were solved
for instead. The results of these optimizations are as follows.

Trefethen and Halpern’s Second-Order ABC:

(24)

where is the speed of light and

(25)

Higdon’s Second-Order ABC:

(26)

The Second-Order Modified Liao ABC:

(27)
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Fig. 6. Reflection coefficients from both the standard and optimized sec-
ond-order ABC’s as a function of incidence angle�=�z = 20. Designated
angles of complete absorption are�1 = �2 = 0�.

An interesting point to note is that when the assumptions
and are made, the parameters given

above for the ABC of Trefethen and Halpern, and that by
Higdon, (24) and (26), can be reduced to those designed for
the original boundary conditions (16) and (18).

The reflection functions are calculated for the above op-
timized boundary conditions using the calculation procedure
described earlier, with the mesh-discretization parameter set to
20 cells per wavelength . The reflection functions
for the three ABC’s in their standard original form are then
compared to the results achieved for the optimized ABC’s.
Since the reflection functions for all three of the optimized
ABC’s are indistinguishable, only one set of results will be
displayed.

Fig. 6 shows the reflection function for all three ABC’s
when they are designed for absorption at normal incidence

. It can be clearly seen that these ABC’s
perform poorly when applied in their original form, yet when
these ABC’s are optimized they all converge upon the same
optimum level of absorption.

Fig. 7 shows the reflection function for the ABC’s when they
are designed for perfect absorption at two angles—
and . Again, the improvement which can be obtained
is obvious.

Fig. 8 shows the reflection function resulting from the
analysis of the optimized second-order Higdon ABC for a
coarse and a fine mesh. Compared to the optimal reflection
function, one can observe that the zeros of the reflection
functions for both coarse- and fine-mesh simulations are at the
desired positions. However, one can also see that away from
the zeros, the reflection by the ABC’s is slightly greater than
that predicted by the optimal reflection function (2). This is
expected as the optimal reflection function is an approximation

Fig. 7. Reflection coefficients from both the standard and optimized sec-
ond-order ABC’s as a function of incidence angle�=�z = 20. Designated
angles of complete absorption are�1 = 5� and�2 = 30�.

Fig. 8. The reflection function obtained by formulation and FDTD simulation
for an optimized second-order Higdon ABC with complete absorption at
�1 = 5� and �2 = 30�. (a) �=�z = 5, (b) �=�z = 10, and (c) the
optimal reflection function (2).

and will become less accurate as the mesh resolution decreases.
Compared to the results achieved by FDTD simulation, one
can again see that the formulation method is very accurate.

Another form of the boundary-truncation technique, which
has appeared often in the literature, is the superabsorbing-
boundary algorithm proposed by Fang and Mei [7]—a method
which is applied in conjunction with other time-space ABC’s
to improve their level of absorption. While not exactly being



PRESCOTT AND SHULEY: REFLECTION ANALYSIS OF FDTD BOUNDARY CONDITIONS—PART I 1169

a time-space boundary condition by definition, it is worthy of
consideration by the optimization procedure outlined above.

The basis of the super-absorption technique revolves around
performing the chosen time-space absorbing-boundary condi-
tion (e.g., first-order Mur) twice, once at the boundary and
once at half a spatial increment inside the mesh, half a time
step later. The superabsorbing-boundary algorithm is then
employed to increase the accuracy of the boundary truncation
by using the error created by the calculation of the outer
boundary to cancel the error produced by the calculation of
the inner boundary.

It has been shown that the total reflection from the mesh
boundary is the product of the reflection from the time-space
ABC and the reflection resulting from the superabsorbing-
boundary algorithm [18, p. 1003]. Thus, one only needs to
be concerned with optimizing the superabsorbing-boundary
algorithm. To do this, one can solve for ,
where is a variable that is used to define the angle at which
the algorithm best performs the error correction. The following
is achieved for an optimal solution:

(28)

To demonstrate the absorption improvement achieved by ap-
plying the superabsorbing-boundary algorithm, three analyses
have been performed. The first-order ABC (8) has first been
implemented at the boundary with the variable(22), chosen
such that the theoretical angle of complete absorption is

. Next, the analysis has been repeated with the
superabsorbing-boundary algorithm applied in its original form
with , where . Finally, the
analysis has been performed with the optimal choice for
(28).

Fig. 9 displays the results of these simulations. One can
see that the absorption abilities of the optimized first-order
ABC have been improved by applying the superabsorbing-
boundary algorithm. The improvement does not appear to be
as good as that obtained simply by implementing a second-
order Higdon ABC (see Fig. 3). It can also be seen that
no extra zeros have appeared within the reflection function
even though the superabsorbing-boundary algorithm has been
tailored for perfect absorption at . However, once
the superabsorbing algorithm has been optimized, one can
see the appearance of the second zero and the obvious im-
provement in the reflective properties. This result, achieved
for the optimized superabsorbing algorithm and applied with
an optimized first-order ABC, is equivalent to that achieved for
all of the optimized second-order boundaries (see Fig. 7). This
suggests that implementation of the superabsorbing-boundary
algorithm, to improve the absorptive abilities of a time-space
ABC, effectively increases the order of that time-space ABC
by one.

It should be noted that this variable is complex, and
as a result, the superabsorbing-boundary algorithm can only
perform optimally in a mesh which is computed using complex
numbers.

It is quite clear from the results presented that all of these
boundary conditions are able to achieve the optimal level of

Fig. 9. The reflection function for an optimized first-order ABC with
complete absorption at�1 = 5

�, �=�z = 20. (a) Without the superab-
sorbing-boundary algorithm, (b) with the superabsorbing-boundary algorithm,
and (c) with the optimized superabsorbing-boundary algorithm.�2 = 30

�.

performance and that the only difference between them are
their methods of implementation. However, when considering
the use of higher order boundary conditions, the Higdon
formulation is the best of these time-space-type absorbing
boundaries as a result of its simple mathematical construction
and the ease by which it can be optimized by choosing the
parameter (26).

VI. CONCLUSION

A general numerical method has been demonstrated, which
enables the calculation of the reflection properties of time-
space ABC’s. The accuracy of this method has been proven
by comparison with data obtained by FDTD simulation for a
number of commonly used time-space ABC’s.

A criterion for the classification of time-space ABC’s has
been defined and an optimal absorbency has been described for
ABC’s of a given order. It has been demonstrated, by correct
choice of parameters, that this optimal level of absorption
can be achieved by all boundary conditions of the type
described, regardless of the mesh discretization. The reflective
equivalence between the second-order ABC of Trefethen and
Halpern, the second-order Higdon (box-scheme discretization),
Fang and Mei’s superabsorbing-boundary algorithm applied
with a first-order ABC, and the second-order modified Liao
ABC’s has also been demonstrated.
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