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Reflection Analysis of FDTD Boundary
Conditions—Part I: Time-Space
Absorbing Boundaries

Deane T. Prescottylember, IEEE,and Nicholas V. ShuleyMember, IEEE

Abstract—Time-space absorbing-boundary conditions (ABC’s) ent ABC’s and their variants [1]-[4], studying their absorbing
are employed to truncate finite-difference time-domain (FDTD) abilities [5], [6], and methods for their improvement [7]-[9].
computational domains and are predominantly used because of e effects that the finite discretization has upon ABC'’s and
their simplicity. Their implementation requires only the calcula- . - .
tion of a boundary-field value as a function of the local fields and the absorption Cha'faCte“St'Cls for coarse apd fine FDTD mes_hes
their recent time history. A general method is described, which has also been studied by Railton and Daniel [10]. The objective
enables highly accurate calculation of the reflection properties of of this paper is to demonstrate that the reflection characteristics
these boundary conditions for plane-wave incidence. A number of of these boundaries can be accurately predicted without the
commonly used time-space ABC'’s are studied, and the technique need for EDTD simulation. It will then be shown that the

is verified by way of FDTD simulation. It is demonstrated that h di tizati b limiting factor i
the performance of time-space ABC'’s is substantially degraded mesh discretization can be overcome as a fimiting factor in

by the influence of the finite-mesh discretizations. A technique the design of time-space ABC's.
is described, which enables these discretization inaccuracies to  Firstly, some definitions that apply to this study of time-
be overcome by correctly choosing the relevant ABC weight- space ABC’s will be provided. These include the perfor-
ing parameters,_thus enablln_g the various boundary conqlltlo_ns mance function, the optimum performance, and trder
to perform preusely_as desired. Solutions for these weighting b hich th ABC’ il b | ified. A thod f
parameters are provided for a number of common boundary y w '? ese S will be classined. i method for
conditions such that their absorption characteristics may be €valuating the performance of these ABC’s given plane-wave
precisely configured to suit any level of mesh discretization. As a incidence will be presented, which will be validated using
consequence, a performance equivalence is established amongsthree ABC'’s appearing very frequently in the literature. These
all time-space ABC's of the same order. are the second-order ABC of Trefethen and Halpern [2], box-
Index Terms—Absorbing boundary conditions, FDTD, time scheme discretization of the second-order Higdon ABC [3],
domain. and second-order modified Liao ABC [11]. Finally, it will
be shown that given the correct choice of parameters (as
|. INTRODUCTION a funqtion of the mesh_resolution), each of t_hese bqundary
. , conditions can be designed to perform optimally (in the
BSORBING-BOUNDARY conditions (ABC’s) are one gense that they are perfectly absorbing at specified angles of

of the most critical elements of finite-difference timeincidence).

doma?n (FDTD) _gnalyses. Used to truncate the computati_onal,:Or simplicity, the analyses will be presented for two-
domain, the ability of an ABC to absorb waves travelingimensional (2-D) free-space on thez plane. (they-direction
outwardly from an FDTD mesh, not only affects the accuragy not ysed to avoid confusion between the FDFlirected

of the analysis, but also governs the size of the computationg)y index;, and the numericaj = v/—1.) The theory and
domain and, as a result, the duration of computation. methods presented here are applicable to mesh truncation in

In this paper, time-space-type ABC's are studied. Theggee_dimensional (3-D) space and dispersive media.
are ABC’s where the field component on the mesh boundary

at timet = n is calculated as a function of the local field I

components, both on the boundary and within the FDTD N ]
lattice, and their recent time history, = n — 4, where  Performance:The ability for an ABC to absorb will be

i=01.2.. measured by the amount of numerical reflection as a func-
1 "

Many studies have been undertaken in the past concemii@j! ©f the angle of incidence upon the mesh boundary. If

time-space ABC'’s. These have included the creation of diffdf€€-Space and monochromatic excitation are assumed, then
choosing a mesh discretization six¢Az (wavelength/mesh
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wherek, andk, are the normal and tangential components afhere k£ is the spatial position index in the normal (to the

the numerical wavenumber. These are related to the frequeboyndary) direction; is the spatial position in the tangential

by the FDTD dispersion relation [12]. direction,n is the time index, and, andk. are the tangential
Order (N): The order of an ABC is defined as the numbeand normal numerically calculated wavenumbers (numerically

of zeros which can be achieved in the reflection function ahlculated, implying that they are related to each other by the

an ABC. The reflection function describes the performance BDTD dispersion relation [12]).

an ABC as a function of the incidence angle. When this wave makes contact with the absorbing boundary,
Optimum PerformanceOccurs when the reflection func-it produces a total field consisting of incident- and reflected-

tion has zeros at the desired angles of incidegiggg, and is a wave components

minimum for all other incident anglgs This can be described

approximately for time-space ABC'’s of ordé¥ as [13] E™(i,k) = EL (i, k) + Rapc Elue(i, k)
R = [ 500) = cos(6) @ = Bpellnftmte et
P L cos(gy) + cos(6) + Rapc Egellenat=heide—kkaz)  (5)

=1

I1l. REFLECTION ANALYSIS BY NUMERICAL FORMULATION where Rspc is the reflection coefficient. This formulation for
A number of methods for calculating the reflection resultin{'® £” (¢ k)-field components can then be substituted into (3)
from an ABC have been given in the literature. The amplitu Q form a relatlon_shlp betwee_n the ABC reflection coefficient
of the reflection has been previously calculated from tfd the ABC weighting functions. Thus
differential equations from which the boundary conditions are
derived [11], [14]. Unfortunately, these methods neglect théo + Rasc Eo
errors resulting from the discretization. Other authors have O, Tmax Zmax
calculated the reflection from the discretized equations by — Z
substituting into them, expressions for the incident field as
a function of space and time [8]. Again, this is not entirely ~ + Rapc a(n,z‘,k)Eoej(‘“"At_’“Im”_’“zmz)). (6)
accurate as it neglects the numerical dispersion inherent in the
FDTD algor_ithm [15]. Thus, to calculate the reflection frony he fight-hand side (RHS) of (6) is separated into two
the ABC's, it is suggested that one follows the method whetg mmations representing the incident and reflected fields, one
the reflection from the ABC'’s is calculated by substituting,, then solve for the reflection coefficieRtysc: shown in
directly into the discretized FDTD equations, expressions ft)f) at the bottom of the page. Given the frequency and angle
the incident fields, which include the effects of the numericgk incidence, one can calculate the wavenumbersand k.,
dispersion. Th!s will be referred to as tfmrr_nulatic_)nmethod, and thus, the reflection from the time-space ABC.
and does not involve any actual FDTD simulation. For example, an ABC may be defined with the following
A general form for the time-space ABC is defined, whergs . ete equations:
the boundary-field componeng?(0, 0), is located at position
z = 0,z = 0, and is required at time¢ = 0. The ABC is n el 1 "
calculated as a weighted sum of the local field values and (0,0) = B*7(0, 1) ++(E"7(0,0) — E*(0, 1)) (8)
their time history

E°(0,0)

CL(TL, ,[;’ k)Eoej(wnAt—inAa;-l—k;kAz)

N=Nmin t=Tmin k=0

where

Tmax Zmax Az —cAt

0
=5 S N i BEYNLE),  n#i# k=0 1T Azt At

N=Nmin t=Tmin k=0

9)

(3) Here,a(0,0,1) = —v, a(—1,0,0) = ~, anda(-1,0,1) =1
i . are constants, which determine the nature of the boundary
wherenmin, Tmins Tmax, anNd zmax define the maximum and

o g ¢ ihe local f d it hi ondition. In this case, the first-order Mur absorbing boundary
rminimum indexes ot the loca’ ime-space domain from wh ] is chosen. One can also find the corresponding equation
the boundary field is calculated. The weighting elemen

. L r the reflection coefficient as
a(n,i, k), are defined individually for each ABC.
Now an incident plane-wave traveling to the leftA- 1= o IwAtHIkAn _ ot | otika A
direction) can be defined as Rapc=— 1= ¢ Il ikeBr — yg JwAl 4 yo dRiAe

Er (L, k‘) _ Eoej(wnAt—kwiAa:—l—k;kAz) (4) (10)

inc

1— 20 Ewmax Zmax (n,i, k)ej(wnAt—kwiAw-l—k;kAz)

. a
N=Nmin £=1=Tmin k=0

- 22 S Fmax Zma (i, k)ed(wnAt—keidz—k.kA2)

t=ZTmin

=Nmin

(7)
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IV. REFLECTION ANALYSIS BY FDTD SMULATION ¢X

The accuracy of the reflection-calculation technique pre-
sented in the previous section, will be demonstrated with
results achieved by using FDTD simulation.

The FDTD reflection analysis was performed using a novel e
quasi-2-D FDTD mesh designed to simuldt®l?-wave trans- X ess —Im
mission within 2-D spacert= plane,E,, H,., H. components i
only). A monochromatic wave is launched at an ABC bound- -
ary, which terminates the mesh in thedirection, and the ‘
magnitude of the reflected wave is recorded.

The simulation is performed at a single frequency, for :

a given angle of incidence. Because the calculation of an

ABC is uniform across the full length of a boundary, the (@)

wavefront, which reflects from an ABC, must now have the

same tangential wavenumbgy as the incident wave (angle ini+1xi .

of reflection equals angle of incidence). A monochromatic b)

excitation is being used, which implies that all fields within

the FDTD mesh must have the same tangential wavenumbydg. 1. Positioning of the field components required for the implementation
f. (@) the normal 2-D FDTD mesh and (b) the quasi-2-D FDTD mesh.

This fact can be used to considerably reduce the size of {he

FDTD mesh without loss of accuracy. This is achieved by

removing the transverse direction, thus creating a quasi-21be reflection from an ABC can now be accurately calculated

FDTD mesh. for a given angle of incidence without the need for a large 2-D

The FDTD simulation is performed using complex numbefSDTD mesh, as the transversedirection is now implicitly
to represent the nodal-field values, this aids in calculatimgcluded into the formulation. The possibility of interference
the transverse differences and in extracting reflection dateem ABC's placed along the boundaries at each of the
In reality, only a one-dimensional (1-D) mesh is createextremities of a 2-D FDTD mesh in the-direction has also
which contains all three field components required in the 24een removed.
mesh (see Fig. 1). The existence of the second dimension, iffor comparison of the reflection-calculation technique, the
this case, thez-direction, is taken into account by implicity FDTD simulator described above has been applied to the
calculating the tangential spatial differences in the FDTEeflection analysis of three different ABC's, which are: 1)
equations. This is possible since all fields within the megshe generalized second-order ABC of Trefethen and Halpern
must have the same wavenumber in thdirection. Consider, (formulation as described by Blaschak and Kriegsmann [5,
for example, the FDTD equation for th,-field component p. 118]); 2) the second-order Higdon ABC using the box-
E™L(4, k) scheme discretization (formulation as described by Bi, Wu,

Y ’ and Litva [16, p. 776]); and 3) the second-order modified Liao

At H;L*%(i,kJr 1y - HQ+%(i,/§ -1 ABC [11, p. 538]. Each of these ABC'’s will be designed
=By k) + ¢ Az and analyzed for two different cases where the designated
angles of complete absorption are: &) = ¢ = 0° and b)
At HQJ’Z (L n 2,/@) n+2 (L ~L ) ¢1 = 5° andgo = 30°. Th_e weightings required to implement
- — . (11) these ABC's will be provided; however, the reader is referred
€ Az to the cited publications for a detailed description of their

.Ym

oz

The term which contains the spatial difference in the tangentffvation.
to the boundary direction is Trefethen and Halpern’s Second-Order ABC:

The weightings required to implement this ABC are as

n+2 ( + 2716) g+% (L - %7]{;) (12) follows, all other weightings are set to zero:
Az
but since the tangential component of the wavenumber is being
n+2 1 _ n+2 1 — ke Ax ( 17170) =C3
enforced, thenH. "> (i + 5,k) = H."?(i — 5,k)e”7%=2%.
Making this substitution into (11), the implicitly differenced a(=1,1,1) = c3
form of the FDTD equation for th&, component becomes a(=2,0,0) = c; + e
-l - 0,0,1) =c1 +¢
EnFL(4, k) a(0,0,1) = ¢1 + ¢
il L n—l—% . L ( 1 0 0) —262 bt 263
_En(L k)_i_ﬁ H; Z(Z’k+§)_H’U (Z’k_§) ( 101) —262—263
Az a(=2,0,1) =
At o1 1 — ¢ ikeirm a(—1,-1 0) =c3
I <L - §’k> { Az } (13) a(—1,-1,1) = c3 (14)
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| T T T T T that as the incident angle is decreased below these zeros, the
amount of reflection increases rapidly to quite high values,
i.e., ~10~2. Above these zeros, one can see a trend which is
common to time-space ABC'’s, where the reflection function
increases monotonically toward 1 at°90

Higdon’s Second-Order ABC:

The weightings required to implement the box scheme
7 discretization of Higdon's second-order ABC are as follows,

&
% I , @ ¢=00,=0 with all other weightings being zero:
8 / FDTD simulation
.5 10° formulation B CL(—]., 07 0) =M + Y2
é CL(—2, 07 0) = =172
o 4
e ®) ¢,=5. ¢,=30° a(0,0,1) = =y — 72
10 .
L EDTD simulation ] a(=1,0,1) = 24 27172
formulation 1 CL(—2, 0, 1) ="n-mn
Tl o . ] CL(O, 0, 2) = —M72
I I ! x ! 1 ! | 1 T a(=1,0,2) =y + 72
0 10 20 30 4 50 60 70 80 90 a(=2,0,2) = -1 (17)
Incidence Angle, 0
Fig. 2. The reflection function for the second-order Trefethen and HalpeWuhere
ABC, calculated by FDTD simulation and numerical formulatighA = = 20. 1Az — cAt
Designated angles of complete absorption are: @)= o2 = 0° and (b) v = COSP1az — cat
¢1 = 5° and g2 = 30°. cos 1 Az + cAt
cos P Az — cAt
V2= T A (18)
where cos P Az + cAt
_ cAt The reflection function has been obtained for this ABC using
o= polz + cAt both the FDTD simulation and the numerical formulation
polz procedure for two configurations of the Higdon ABC with
C2 = _pioAz T oAt the variablesy; and~. (18) chosen, such that the theoretical
Az A angles of complete absorption are:ga) = ¢» = 0° and b)

c3 = — 3 (15) ¢1 = 5° and (7)2 = 30°.
Polz+cAt Ax Fig. 3 displays the results of these simulations. As can be
and seen from these results, the calculation procedure has again

_ cos ¢y cos gy + 1 been extremely accurate in predicting the reflection function

Do = cos b1 + cos @ of the ABC. One can see that there is a slight discrepancy
1_1 2 in the results where the reflection is less tlrarl0=>. This
p2 = (16) is acceptable since numerical error will occur in the FDTD

cos ¢ + cos ¢; simulation owing to accumulating computational roundoff and

The reflection function has been obtained using both the FDthe oscillatory nature of monochromatic FDTD simulations

simulation and the numerical calculation procedure, describd]. A much-improved performance (greater than one order)
previously for two separate configurations of the ABC witfs obtained for this ABC over that achieved by the second-
the variableg, andp, (16), chosen such that the theoreticaprder Trefethen and Halpern ABC (see Fig. 2). Once again,
angles of complete absorption are: @) = ¢, = 0° and b) the zeros are not exactly at the positions where they have
¢, = 5° and ¢, = 30°. It should be noted that this ABC isbeen designed to be; however, their displacement is not too
equivalent to the well-known second-order Mur ABC [1] forunacceptable.

the case where; = ¢» = 0°. The Second-Order Modified Liao ABC:

The results from these calculations are provided in Fig. 2. AsThe Liao ABC [4] is a time-space extrapolation boundary
can be seen from these results, the calculation procedure p@gdition based upon a knowledge of the incident wave.
been extremely accurate in predicting the reflection function dhe formulation uses the fact that a wave normally incident
the ABC. A number of properties of this boundary conditionpon a boundary, traveling at the speed of light, will travel
can also be observed. Firstly, the most obvious feature afdistance ofcAt¢ toward the boundary during one FDTD
these reflection functions is that the zeros do not appeartime step, where is the speed of light. The Liao absorbing-
the positions as given by the choicemfandp,. In fact, only boundary condition is then constructed as a linear time-space
one zero appears in each reflection function where two shoeltrapolation of the fields at tHeA¢ points in space previous
be seen. This occurs as a result of discretizing the differential the boundary at tim& = n — [A¢ [ integer. Because
equations which define the ABC [5], [10]. It can also be seghe pointsicAt may not coincide with the nodes of the
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10° - = 10° [ 7
B g _
10 [ n 10
_10°f 7 1071 i
2| ;O 1
8 10°f “ 8 10°0 =
=2 s (@ ¢,=0",0,=0° =2
S - o ) 1 » 2 4 =i - 4
E Gﬂv\{ ! n,]" FDTD simulation § 4l
S o' ) X ok xx . S 10 @ AlAz=5 7
s o
8 3 formulation T g i (b) A/Az=10 )
g _ 5 sl i
E“; 10° 7 = 10” —
5" | | 5| (©) A Az=20 |
(b) =5, ¢, =30
ok 7= . 10°F (@ A/AzZ=100 -
FDTD simulation
F o o o o o 1 B 1
107 formulation — ' N
. | EYN ! ! -
10 100 | ! L ! l x I I

1 1 | 1 | | I l |

0 10 20 30 40 50 60 70 80
Incidence Angle, 6

0 10 20

30 40 50 60 70 80

Incidence Angle, 0

90

Fig. 3. The reflection function for the second-order Higdon ABC, calculatdeig. 5. The reflection function for the second-order Higdon ABC for different

by FDTD simulation and numerical formulatioh/Az = 20. Designated mesh discretizations. The designated angles of complete absorption for the
angles of complete absorption are: (&) = ¢2 = 0° and (b)¢; = 5° ABC are¢1 = 5° and¢2 = 30°. The mesh discretization ratios are: (a)
and ¢2 = 30°. A Az =75, (b) \/Az = 10, () A\/Az = 20, and (d)A/Az = 100.

o = ‘ ' ' ’ ' Y ' ' "] interpolation are as follows:
B @ ¢,=0", ¢,=0 7] 2, 2
—3c; — 3 4
- FDTD simulation 8 a(-1,0,0) = ate ;1 cat
. B 0.2 9.2
3 L formulation | CL(—]., 0, 1) _ 2c¢] — 2¢5 + 4c1 +4co
& 2
=k - 22
£ L =T a3 ] o(-1,0,2)= 2T 22 T
L= EDTD simulati
. o o Z‘f““na“;“ / — a(=2,0,0) = —a(—1,0,0) — c1eo + 1
§ formulation 4 a(—2,0,1) = —a(—1,0,1) + 2c1¢2
%3 L _ a(—2,0,2) = —a(-1,0,2) — c1co (19)
B L il
B where
Hggd
L ¢1 = ¢f2co8 ¢y
5 | co = c/2cos ¢po. (20)
10 I:I__L | | | | | t | | /

0 10 20 30 40 50 60 70 80 90
Incidence Angle, 6 The reflection function has been obtained for the Liao ABC

_ . _ o using both the FDTD simulation and the numerical-calculation
ten o T Smcion h e mmimsa e 125 procedure for o configurations of the ABC with the variables
Designated angles of complete absorption are:¢a)= ¢, = 0° and (b) ¢1 and cz (20) being chosen to obtain theoretical angles of

@1 = 5° and gy = 30°. complete absorption as follows, where:@&) = ¢, = 0° and
b) ¢1 = 5° and (7)2 = 30°.

o ) ) Fig. 4 displays the results of these simulations. As can be

FDTD mesh, it is necessary to use an interpolation scheigp, from these results, the data obtained from the numerical
to implement this boundary condition [11]. formulation is indistinguishable from that obtained by FDTD
The modified Liao ABC differs from the standard Liaosjimulation. It is also plainly obvious that the performance of
ABC in that it is able to be tuned for absorption at desireghis ABC is extremely poor. This is a direct consequence of
angles of incidence. The weightings required for the modifidthving to interpolate the field values in space, thus limiting
Liao’s second-order ABC resulting from the use of quadrattbe accuracy of the ABC to that of the quadratic interpolation.
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V. ABC OPTIMIZATION the optimum-performance equation (2). This new formulation

If the effects that the finite discretizations have upon tH@r the boundary condition will now be defined as being

time-space ABC's are studied, one finds that as the medptimal, since it now perfectly absorbs at the required angle

becomes coarser (decreasitgAz), the ABC performance ©f Incidence. _ o _
degrades [10]. This can be observed in Fig. 5, where the reflecT € method described above for optimizing the time-space
tion from the second-order Higdon ABC (17) has been calchoundary conditions, solving fakssc = 0, has been.appllgd
lated for a number of mesh discretizations. One can see thaf¢he three boundary conditions mentioned previously: the
the mesh discretization ratio is increasadA » — co) that the second-order ABC of Trefethen and Halpern, the second-order
reflection function for this ABC approaches the optimal levéligdon using the box-scheme discretization, and the second-
of performance, displaying zeros for the desired angles of in@tder modified Liao ABC. For the second-order Trefethen and
dence. The object of this section is to show that one can sol/@/PeM (14) and Higdon (17) boundary conditions, it was
for the various weighting parameters of all time-space ABCRossible to retain the character of the boundary conditions and
such that the desired optimum performance can be achieve@fve only for their governing variablgs, p2, 71, andy.. In
regardless of the level of discretization of the FDTD mesh. (€ case of the madified Liao boundary condition (19), this was

If one examines the equation which is used to calculate t8t POSsible, and the ABC weightinggn, i, k) were solved
reflection from an ABC (7), one can readily see that the numdpr instead. The results of these optimizations are as follows.
ator and denominator are effectively polynomials of the three Tréfethen and Halpern’s Second-Order ABC:
variablese/«at, ¢—ik=A2 - and ¢/k-2% where thea(n, i, k)

serve as the polynomial coefficients. Now the performance of . A4+ a

the ABC (as previously defined) is measured only as a function Po= cas (24)
of the incident angle; thus;“~* remains constant. Sinde, Py = _a

is related tok, by the dispersion relation, then one effectively caz

have a polynomial of only a single variahle’*:2~. Because wherec is the speed of light and
this reflection function is a polynomial, finding the incident

22 wAt
angles where the reflection is zero is equivalent to findinge; = — AZA_Z SI;A(ZT) ATTAS
the roots of the numerator. Conversely, the ABC may be At?sin (B2 )sin (#25 ) cos (HS5gR225)
designed to have zeros for certain angles of incidence simpl;& Azsin (25t ) cos(B182) cos (k222 )sin (lrztheaz)
by correctly setting the weighting paramete«s:, i, k). 2= WAt i (k1AZ o (kaAz ki Atky Az
yUpon fo?lming a% equatio?w to g<]:zflculate '?rjl(e 7re7fle)ction from Ateos (3% )sin( 8172 sin (B2 cos( 1255 )(25)
an ABC, one carsometimesolve for the necessary weighting
parametersi(n, i, k) to obtain zero reflection at the required Higdon’s Second-Order ABC:
angles of incidence. For example, one may wish to achieve
zero reflection from an ABC discretized in the form given by sin (Aiszswat)
(8) for an incident wave with normal wavenumber component Vi = m (26)

k1 = k cos(¢1). To achieveRapc = 0, one could solve for o '
eithera(0,0,1), a(—1,0,0), anda(—1,0,1), or, to retain the ~ The Second-Order Modified Liao ABC:
nature of the ABC, one could solve for the parameifgias
follows. Neglecting the denominator from (10), one obtains ¢(—1,0,0) = 2cos (wAt) — sin (wAt)
Rape = 0=1— ¢ dwattifiaz _ yo=jwit | o ohikidz cos (k1 Az)  cos (kaAz)
(21) ' <Sin (k1Az)  sin(kaAz) )

wherek; =k cos(¢1) and cos(¢y) is the angle of complete 4(—1,0,1) = sin (wAt)( . 1 4o 1 )
absorption. After some manipulation, one can then deduce the sin (k1 Az) * sin (k2Az)

following: a(—1,0,2) =0
sin(%) a(—2,0,0) = cos (wA?) sin (wA¥)
V= o ActwAL) (22) cos (k1Az)  cos(kelz) 9
sin( == . —
) ) ( ] 2 ) ] sin (k1 Az)  sin(koAz) cos” (wAt)
The reflection function for this ABC can then be obtained by cos (k1Az) cos (kaAz)
substituting (22) back into (10) — sin? (WA?) (A7) sin (g2
. ky—k. 1= 2%
Rapc = —e“kz&zs%n(k—ik), (23) (=2,0,1) = sin? (wAt)
sin(*35) T (k1 Az) sin (ko Az)
By inspection, it can be seen that this function will have only - (cos (k1 Az) + cos (k3 Az)) — cos (wAt)
one zero, and it will occur when the incident wavenumber 1 1
(normal component) i&. = k;. This also identifies the ABC -sin (wAE) <Sin(k1Az) + sin(l@Az))

as first-order by definition. s
If one applies Taylor expansions to the sine terms in (23)y(—2,0,2) = — — S @At) )
then to the leading order, this equation has the same form as sin (k1Az) sin (k2Az)

(27)
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Fig. 6. Reflection coefficients from both the standard and optimized sefeig. 7. Reflection coefficients from both the standard and optimized sec-
ond-order ABC's as a function of incidence angigA> = 20. Designated ond-order ABC’s as a function of incidence angigAz = 20. Designated
angles of complete absorption ate = ¢» = 0°. angles of complete absorption ate = 5° and¢2 = 30°.

An interesting point to note is that when the assumptions | ' ' ' T
|k.Az| < 1 and |wAt| < 1 are made, the parameters given !
above for the ABC of Trefethen and Halpern, and that by ||
Higdon, (24) and (26), can be reduced to those designed for '°
the original boundary conditions (16) and (18). 0

The reflection functions are calculated for the above opg
timized boundary conditions using the calculation procedure_af

(@ A/Az=5

described earlier, with the mesh-discretization parameter set t§ 10°[ DD smaation
20 cells per wavelengtfh /A= = 20). The reflection functions “‘ag Al formulation ]
for the three ABC's in their standard original form are thenlé 10 b
compared to the results achieved for the optimized ABC'ss | ® A/Az=10 1
Since the reflection functions for all three of the optimizedg 10°|- o 7
ABC's are indistinguishable, only one set of results will be | ala wmaton

d isplayed . 10 formulation ]

Fig. 6 shows the reflection function for all three ABC'’s S
when they are designed for absorption at normal incidence 107 (© optimal reflection n
¢1 = ¢ = 0° It can be clearly seen that these ABC's - -
perform poorly when applied in their original form, yet when — 1o*[- ' | | | 1 j | | | h
these ABC'’s are optimized they all converge upon the same 0 10 20 3 40 50 6 70 8 90
optimum level of absorption. Incidence Angle, 6

Fig. 7_Sh0WS the reflection funCtllon forthe ABC's when the}éig. 8. The reflection function obtained by formulation and FDTD simulation
are designed for perfect absorption at two angleés— 5° for an optimized second-order Higdon ABC with complete absorption at
and¢, = 30°. Again, the improvement which can be obtained: = 5° and ¢, = 30°. (@) A\/Az = 5, (b) A\/Az = 10, and (c) the
is obvious. optimal reflection function (2).

Fig. 8 shows the reflection function resulting from the
analysis of the optimized second-order Higdon ABC for and will become less accurate as the mesh resolution decreases.
coarse and a fine mesh. Compared to the optimal reflecti@ompared to the results achieved by FDTD simulation, one
function, one can observe that the zeros of the reflectican again see that the formulation method is very accurate.
functions for both coarse- and fine-mesh simulations are at theAnother form of the boundary-truncation technique, which
desired positions. However, one can also see that away frbas appeared often in the literature, is the superabsorbing-
the zeros, the reflection by the ABC's is slightly greater thamoundary algorithm proposed by Fang and Mei [7]—a method
that predicted by the optimal reflection function (2). This isvhich is applied in conjunction with other time-space ABC'’s
expected as the optimal reflection function is an approximatioém improve their level of absorption. While not exactly being
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a time-space boundary condition by definition, it is worthy of
consideration by the optimization procedure outlined above. 10° |~
The basis of the super-absorption technique revolves around
performing the chosen time-space absorbing-boundary condi- 10"~
tion (e.g., first-order Mur) twice, once at the boundary and
once at half a spatial increment inside the mesh, half a time 10°
step later. The superabsorbing-boundary algorithm is theﬁ
employed to increase the accuracy of the boundary truncatioB 1°
by using the error created by the calculation of the outeg
boundary to cancel the error produced by the calculation oﬁ 10*
the inner boundary. g
It has been shown that the total reflection from the mesf§ ,,°-
boundary is the product of the reflection from the time-spacé& 1
ABC and the reflection resulting from the superabsorbing- s optimized Superabsorbing ABC
boundary algorithm [18, p. 1003]. Thus, one only needs to , + optimized 15t Order ABC ]
be concerned with optimizing the superabsorbing-boundary W E _
algorithm. To do this, one can solve f&%,perabsorber (0) = 0, |
wherep is a variable that is used to define the angle at which ok
the algorithm best performs the error correction. The following Ll L ! l l ! l I

. gt . . i 0 10 20 30 40 50 60 70 80 90
is achieved for an optimal solution: .
Incidence Angle, 6
wAt

watl S wAttk{ Az
Sm(—Q) 6_3(%) (28) Fig. 9. The reflection function for an optimized first-order ABC with
sin (%) complete absorption ap; = 5°, A/Az = 20. (a) Without the superab-
sorbing-boundary algorithm, (b) with the superabsorbing-boundary algorithm,
To demonstrate the absorption improvement achieved by apd (c) with the optimized superabsorbing-boundary algorithn= 30°.

plying the superabsorbing-boundary algorithm, three analyses

ir;ﬁvleent:i?\?egez;'tci:]rgebdéu-lr—]g(;rﬂrj\:i-t?]ntjr?er Ca?r; (|8 )Zgascﬁlgztege%rérformance and that the only difference between them are
P y bl€22), their methods of implementation. However, when considering

such that the theoretical angle of complete absorption % use of higher order boundary conditions, the Higdon

J— e 1 1
¢ = 5. N.ext, the analysis _has bee_n rgp_eated .W'th ﬂ?grmulation is the best of these time-space-type absorbing
superabsorbing-boundary algorithm applied in its original forli,r)]oundaries as a result of its simple mathematical construction

erlthl P i :hCAtt{AiCOS(?Z}nWSeVﬁZ) ch: 30toi.mFlmarl1|yi’ the rand the ease by which it can be optimized by choosing the
analysis has been performe e optimal choice fo parametery (26),

(28).
Fig. 9 displays the results of these simulations. One can
see that the absorption abilities of the optimized first-order
ABC have been improved by applying the superabsorbing- VI.  CONCLUSION
boundary algorithm. The improvement does not appear to beA general numerical method has been demonstrated, which
as good as that obtained simply by implementing a secorghables the calculation of the reflection properties of time-
order Higdon ABC (see Fig. 3). It can also be seen thgpace ABC'’s. The accuracy of this method has been proven
no extra zeros have appeared within the reflection functityy comparison with data obtained by FDTD simulation for a
even though the superabsorbing-boundary algorithm has beember of commonly used time-space ABC'’s.
tailored for perfect absorption at; = 30°. However, once A criterion for the classification of time-space ABC's has
the superabsorbing algorithm has been optimized, one dsgen defined and an optimal absorbency has been described for
see the appearance of the second zero and the obvious ABC’s of a given order. It has been demonstrated, by correct
provement in the reflective properties. This result, achievetioice of parameters, that this optimal level of absorption
for the optimized superabsorbing algorithm and applied wittan be achieved by all boundary conditions of the type
an optimized first-order ABC, is equivalent to that achieved fafescribed, regardless of the mesh discretization. The reflective
all of the optimized second-order boundaries (see Fig. 7). Tkiguivalence between the second-order ABC of Trefethen and
suggests that implementation of the superabsorbing-boundsligipern, the second-order Higdon (box-scheme discretization),
algorithm, to improve the absorptive abilities of a time-spadeang and Mei’s superabsorbing-boundary algorithm applied
ABC, effectively increases the order of that time-space ABWith a first-order ABC, and the second-order modified Liao
by one. ABC'’s has also been demonstrated.
It should be noted that this variable is complex, and
as a result, the superabsorbing-boundary algorithm can only
perform optimally in a mesh which is computed using complex
numbers. The authors would like to acknowledge the reviewers for
It is quite clear from the results presented that all of theskeir helpful comments and constructive criticisms that led to
boundary conditions are able to achieve the optimal level afsubstantial improvement of this paper.
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